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G E N E R A L  H Y P E R T H E R M I A  - C U R R E N T  S T A T U S  O F  

T H E  C O N C E P T U A L - T H E O R E T I C A L  B A S I S  

Z .  P.  S h u i ' m a n  UDC 536.2.072:612.014.424.5 

Different approaches to the physicomathematical description of the thermophysics and rheodynamics of 

blood flow in living, externally heated biotissues are considered, analyzed, and compared. Our own model 

is suggested that allows for the influence of the rheologtcal factor on the spatial-temporal evolution of 

temperature and hydrodynamic fields in normal and tumor biotissues subjected to the effect of shf 

electrom agnetic fields. 

1. Analysis of Basic Concepts of the Theory of Heat Transfer in Living Biotissues. With the development 

of computers and improvement of numerical techniques many difficulties disappeared in the solution of complex, 

especially nonlinear multifactor boundary-value problems by analytical, more often approximate, methods. Two 

approaches are used in theoretical hyperthermia: compartmental and with distributed parameters. The first is used 

in calculations of general hyperthermia (GHT) and is based on mental sectioning of a human body by integral 

balances of heat, mass, and momentum for each section (compartment). The sections are divided into individual, 

as a rule, cylindrical layers (subcompartments) with a number from 2 to 6. Spatial constancy and continuity of all 

properties and parameters are assumed for each layer (skin, fat, muscles, bone, tumor, large blood vessels). On 

this basis the temperature field in a subcompartment (layer) is already described by the differential biothermal 

equation (BTE) 

OT (1 
pc -~- = V (.~VT) + qcon + qmet + qv ' 

The method of distributed parameters is used in calculations of local and regional hyperthermia and ~s 

based on biothermal equations of different types. In this approach it is most difficult to express the convective 

component in an analytical form. The so-called purely convective perfusion formulation 

qcon = rlc~ (Ta - T) (2) 

is used most often. Here co is the per'fusion (the rate of blood microcirculation in individual living biotissue, 

see-l) ,  r/ is the efficiency of heat transfer between biotissue and venous blood (0 -< r/ _< 1), r/= 1 corresponds to 

total thermal equilibrium. 

Expression (2) describes a convective heat flux as the difference between the thermal energies supplied to 

biotissue by arterial blood and carried away from biotissue by venous blood. 

There is a nonconvective purely diffusion formulation of the biothermal equation: 

aT (3) 
pc ~ -  = V (,,1.effVT) + qmet + qv �9 

The effective coefficient of thermal conductivity Jl.eff characterizes the combined effect of the molecular and molar 

components of heat transfer. This formulation implicitly assumes full leveling of the temperatures of biotissue and 

blood in capillaries, which is not always correct. 
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Fig. 1. Eleven-compartment thermal model of a man (Huckaba and Tam).  

2. Our Own Model. At present we are developing one more approach. Living biotissue is considered to be 

some effective capi l lary-porous medium (EPM) the architectonics of which (diameter,  length, sinuosity of  

capillaries) is similar to biotissue. The network of finest capillaries is modeled by one tube that has the same volume 

and hemodynamic resistance as the network. The diameter of this tube is expressed in terms of the size, geometry, 

and permeability of the pores. When the diameter and length of the equivalent tube are found, well-known classical 

dimensionless relations for convective heat transfer of the type 

,~ 0 5 ~  025  (4)  
Nu b = Atce b t ' r  b 

or in terms of dimensional characteristics 

~bdeqv " l [ (  4PbQb I ~ ('ubcbl 

are written. Here a b i5 the coefficient of convective heat transfer of blood; ~b is the blood viscosity; deq v is the 

diameter of the equivalent channel; Qb is the blood flow rate through biotissue (cross section of the equivalent 

tube); Nu b, Reb, Prb are the dimensionless Nusselt, Reynolds, and Prandtl numbers for blood. 

3. Critical Notes. Both models, BTE and EPM, are, to a certain extent, physically incorrect since the blood 

flow velocity and the heat fluxes are inherently vectors, whereas the mathematical models considered are scalar. 

Whereas for large blood vessels (veins, arteries) one can take into account the direction of blood flow and the spatial 

orientation of the velocity vector, for microcirculation it is practically impossible to indicate them unambigously. In 

principle, for this purpose tensor descriptions are applicable that considerably complicate mathematical simulation 

due to uncertainty in the determination of a large number of material constants in all directions rather than due 

to the labor-consuming and cumbersome nature of the system of biothermal equations. Ineffective attempts to realize 

this idea are known [1 ]. Moreover, both BTE and EPM used in local approximations either ignore the presence of 

large blood vessels or replace them by effective microcirculational ones. Furthermore, in real living biotissue both 

large and small arterial channels adjoin with similar venous ones that have a different temperature. Two additional 

processes of heat transfer arise, one between channel vessels and the other between blood vessels and biotissue 

surrounding them. Both processes lend themselves to be included in a general physicomathematical  model of BTE 

(or EPM). 

4. Compartmental  Physicomathematical  Models of General Hyperthermia.  Figure 1, taken from the report 

of the scientific group "Rheomed" [2 ], schematically shows a plane model of Huckaba and Tam that consists of 

eleven compartments - one spherical and ten cylindrical, with paired limbs being represented as a single entity: 

head, neck, forearm, hand, arm, fingers, chest, abdomen, thigh, shin, foot. An individual compartment (depot) of 

blood is added to them. The subcompartments are: skin, fat, muscles, a central region (core) (for limbs bone serves 

as the core). It is important to note that this scheme supposes spatial uniformity of temperature within the limits 

of each subcompartment.  Temperature changes only in time and from compartment to compartment.  Moreover, 
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Fig. 2. Fourteen-compartment thermal model of a man (Shitzer). 

plane symmetry does not make it possible to include in the analysis any organ affected by tumor (kidney, lungs, 
stomach, etc.). For all 44 subcompartments the equations of nonstationary heat balance are written in the form 

Accumulation ['Heat of ] IConductive heat 
of thermal energy = |subcompartment[ + [transfer of adjacent - 
in a subcompartment [metabolism j Lsubcompartments 

['Heat entrainment ] IHeat transfer ] 
- |by blood flow f r o m | -  |to environment| (5) 

L a compartment j L J 
For the central blood depot the following intrinsic energy balance is formed: 

Accumulati~ ] |Heat supplied 1 |Heat carried l 
of thermal energy| = /to the depot by / - [away from the (6) 
in the depot J Lvenous blood j Ldepot by arterial blood 

After substitution of material properties, parameters, and characteristics this system of 45 differential 
equations is solved numerically. As a result the spatial-temporal evolution of temperature fields in a human body 
with general and regional hyperthermia is determined. 

5. Shitzer Three-Dimensional Models. In a series of works by A. Shitzer [4-7 I an interesting development 
and improvement of the GHT model is given in the form of a 14-compartment axisymmetric model (Fig. 2). An 
important advantage of this model is a more rigorous analysis of the geometry of the temperature fields in the 
subcompartments in the radial and azimuthal directions. Thus, the asymmetry of external effects of the 
environment or the source of electromagnetic radiation is taken into account. The Shitzer model includes, although 
in a simplified form, the variability of the temperature of large blood vessels in the heat balances: heat transfer 
between arteries and veins and thermal interaction between large blood vessels and biotissues surrounding them 
are taken into account. Moreover, thermal interconnect[on between different compartments via the system of blood 
circulation is envisaged. 
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Division of the en t i re  blood vessel sys tem into two groups  is an impor t an t  s t ep  forward .  The  first 

encompasses  large channels  where ar ter ies  and veins in a counterflow exchange heat  with each o ther  and with 

biotissues (predominant ly  muscular) sur rounding them. The  second involves fine capi l lar ies  where  blood flow is 

much slower than in ar ter ies  and veins. Consequent ly ,  the lime of residence of each port ion of the blood in the 

capil laries will be large and sufficient to reach thermal balance with the blood vessel walls. 

The mathemat ica l  formulation of the thermal balances for each subcompar tment  in cyl indr ical  coordinates  

has the form 

p~ c i - -  = ,l, - -  r --~-j  + + (ra i  - r J  + ~ 0~o2| + qme,i % i  cbi 

+ aai ( ra i  - T~) + avi (Tai - Ti) + %i  (Tvi - r , ) .  (7) 

The  lef t -hand side of the balance describes accumulation of thermal energy (time variat ion of heat  content in 

biotissue),  the r igh t -hand  side expresses,  respectively, radial  and azimuthal  changes in the heat  fluxes, metabolism 

heat, heat t ransfer  by microcirculation (perfusion),  heat convecttion in an ar tery ,  heat  t ransfe r  between an ar te ry  

and a vein, and  heat t ransfer  through a vein. 

The  boundary  condit ions are 

-~r axial symmet ry  of the temperature  profile 
OT = 0 - (adiabatic  thermal regime in the 

r=O nea r -ax i s  reg ion) ,  

OT 
q l r = R o  = -- ~" ~ r  = ct ( T  - Tenv) + qrad + qswlr=R 0 -- boundary  condition of the third kind on the wal l .  (8) 

Here a is the coefficient of convective heat exchange with the environment;  qrad is the radia t ion  heat  flux on the 

blood vessel walt; qsw is the heat of sweating, which depends  on the quanti ty of l ibera ted  sweat and  also on the 

temperature  and humidi ty  of the sur rounding air. The local coefficients of heat  exchange of blood vessels (ar ter ies  

and veins) with each other  and with biotissues surrounding them, a a and a,,, depend  on the volume of blood in the 

blood vessels and the dimensions (volume) of the compartment .  Thermal  interaction (conjunction) of neighboring 

(contacting) compar tments  is real ized through blood vessels. 

In contrast  to the well-known propositions of Wissler [8] about the constancy of the tempera ture  and 

velocity of blood in large blood vessels of a compartment ,  Shitzer assumes the tempera ture  to be variable along the 

blood vessel length according to the l inear addit ive law 

Thou, = flbTb - (1 - ~b) Thin" (9) 

Here Tb is the mean temperature  of blood in a blood vessel; fib is a numerical coefficient; Tbou t and  Thi n are the 

temperatures  at the outlet and inlet of a blood vessel, respectively. 

The  f ie ld of d i m e n s i o n l e s s  t e m p e r a t u r e s  in each s u b c o m p a r t m e n l  is d e s c r i b e d  by the gene ra l i zed  

differential  equation 

V020i + 1 O0 i 1 02Oi] 

- + 4-5 o~o 2 ] 

with the boundary  condit ions 

+ qt Xi  + ( W i  + Uai) • 

x X i (Oa,) - Oi) + U~i X i (0,, i - 0 , )  (10) 

O0 i 

0- t -  f=0  = 0 '  
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Fig. 3. Five-compartment  thermal model of a man (Jain). 

0Oi I 
= Nuconi (Oenv,i - tDl) + Nuswt + NUrad ({~radi -- Oi) " 0--~ ~=, 

(i t)  

Another  valuable advantage  of the Shitzer  model is an original choice of the parameters  that make the 

system dimensionless:  T" = Qb.Oas/CbasPOCb is the nondimensional iz ing temperature;  O = T/T" is the dimensionless  
, 2 temperature;  r = rach/Rch is the d imensionless  time. Here Qb.Oas is the basic value of metabolism heat flux; Cba s 

is the basic value of heart  discharge;  8 -- r/R 0 is the dimensionless  radial  coordinate (R0 is the radius of the outer  

surface of 1he compar tment ) ;  ~p is the dimensionless  azimuthal  coordinate;  X =PbCb/(pr is the ratio of the heat 
2 

capacities of blood and biotissue; qmet.i = Rchqmet/(achPbCb T) is the dimensionless  metabolism heat flux; W~= 

7~fl~wb/pb is the d imensionless  velocity of blood flow in capillaries;  w b is the velocity of blood flow in capillaries.  

The following addi t ional  condit ions close system (10)-(1 I): a) for longitudinal  temperature  variations in 

arteries and veins (two relat ions) ;  b) for heat t ransfer  of large blood vessels (two relat ions);  c) a continuity equation 

(one condit ion is mass conservation of blood in the body).  

Basic parameters  that are found from a numerical solution of the initial pseudos ta t ionary  problem in the 

absence of hypcr thermia  and sweating and with a switched-off  thermoregulatory  system are used in the Shitzer  

approach. Here,  the well-known dependences  of measured physiological parameters ,  namely,  metabolism and heart  

discharge of blood, on the age of the patient are used as the basic ones. In this way the basic characteristics 

tperfusmnal and metabolic) are calculated for all subcompartments. The Shitzer model with its high efficiency is 

sli l l rather complex and cumbcrsome and requires a great amount of various input information. 

6. Jain Rapid Model. The five-compartment Jain model [9 ] is rather promising for rapid estimation of the 

effect of GHT on a tumor ly ing sl ight ly below the skin. The init ial  premise is as follows: if we a re  interested only 

in a tumor and its interaction with normal biotissues, then we can restrict ourselves to just a small number of 

compartments. According to the Jain model (Fig. 3), all normal biotissues of the body, except skin, are combined 

to one compartment. The remaining compartments are the tumor, the skin directly above the tumor, the remaining 

~k~n, and the central blood depot. To determine temperature gradients each compartment is divided into N 

',ubcompartments. Nonstatlonar,, hc;.lI balances t,5) and (6) arc written for all sections. 

Different modifications and ,,ersions of the .lain model are used to calculate GHT as applied to a man and 

:lmnlals: rats, r;lbbits, pigs, dogs, and monkcys. 

N O T A T I O N  

a, coefficient of thermal  diffusivity; c, heat capacity; q, heat flux; r, radial  coordinate;  t, time; R, radius  

of a compar tment ;  T, temperature ;  U, mean dimensionless  coefficient of heat t ransfer  in a blood vessel; .2, thermal 

conductivity; p,  densi tv;  r azimuthal  angle; | d imensionless  temperature.  Subscripts:  a, a r tery  (ar ter ial) ;  has, 
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basic value; v, vein (venous); ext, external; in, inlet; out, outlet; b, blood; con, convective; met, metabolic; sw, 

sweating; env, environment; ch, characteristic value; eqv, equivalent; w, wall; tad, radiation. 

R E F E R E N C E S  

I. 

. 

. 

4. 

5. 

6. 

7. 

8. 

9. 

A. Shitzer and R. C. Eberhart (eds.), Heat Transfer in Medicine and Biology. Analysis and Applications, New 

York (1985). 
Report of the Scientific Group "RHEOMED" on the Research Study: "Rheological and Thermophysical Factors 

of Hyperthermia of Tumor Biotissues," Stage 2, Project BZ-222 of the Fundamental-Research Foundation of 

the Republic of Belarus, Minsk (1993). 

Ch.E.  Huckaba and H. S. Tam, in: Adv. Biomed. Eng., Pt. I, New York (1980), pp. 1-57. 

A. Shitzer, NASA Tech. Mem. X62, 172 (1974). 

A. Shitzer, in: Topics in Transport Phenomena (ed. C. Gutfinger), New York (1975), pp. 211-341. 

A. Shitzer and M. K. Kleiner, J. Biomech. Eng., 102, 162-169 (1980). 

A. Shitzer and M. K. Kleiner, Bull. Math. Biology, 38, 369-386 (1976). 

E. H. Wissler, J. Biomech. Eng., 110,254-256 (1988). 

R. K. Jain, in: Adv. Biomed. Eng., PI. I, New York (1980), pp. 58-66. 

720 


